Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Environ Sci Pollut Res Int ; 2022 Sep 06.
Article in English | MEDLINE | ID: covidwho-2228945

ABSTRACT

Tokyo Summer Olympics and Paralympics have raised social issues regarding the potential rise in COVID-19 cases in Japan and risks associated with the safe organization of mega sporting events during the pandemic, such as the FIFA World Cup Qatar 2022. This study investigates the Tokyo Summer Olympics as a unique case study to clarify the drivers of infectivity and provide guidelines to host countries for the safe organization of subsequent international sporting events. The result here reveals that Tokyo and Japan did not experience a rise in confirmed cases of COVID-19 due to the hosting of the Summer Olympics. Still, transmission dynamics seems to be mainly driven by the high density of population (about 1.2%, p-value <0.001) like other larger cities in Japan (result confirmed with Mann-Whitney U test, significance at 0.05). Our study provided evidence that hosting mega sporting events during this COVID-19 pandemic is safe if strictly maintained the precautions with non-pharmaceutical (and pharmaceutical) measures of control of infections. The Tokyo Summer Olympics hosting will be exemplary for next international events due to the successful implementation of preventive measures during COVID-19 pandemic crisis.

2.
Model Earth Syst Environ ; 8(3): 3413-3421, 2022.
Article in English | MEDLINE | ID: covidwho-2000181

ABSTRACT

The CAR-T cells are the genetically engineered T cells, designed to work specifically for the virus antigens (or other antigens, such as tumour specific antigens). The CAR-T cells work as the living drug and thus provides an adoptive immunotherapy strategy. The novel corona virus treatment and control designs are still under clinical trials. One of such techniques is the injection of CAR-T cells to fight against the COVID-19 infection. In this manuscript, the hypothesis is based on the CAR-T cells, that are suitably engineered towards SARS-2 viral antigen, by the N protein. The N protein binds to the SARS-2 viral RNA and is found in abundance in this virus, thus for the engineered cell research, this protein sequence is chosen as a potential target. The use of the sub-population of T-reg cells is also outlined. Mathematical modeling of such complex line of action can help to understand the dynamics. The modeling approach is inspired from the probabilistic rules, including the branching process, the Moran process and kinetic models. The Moran processes are well recognized in the fields of artificial intelligence and data science. The model depicts the infectious axis "virus-CAR-T cells-memory cells". The theoretical analysis provides a positive therapeutic action; the delay in viral production may have a significant impact on the early stages of infection. Although it is necessary to carefully evaluate the possible side effects of therapy. This work introduces the possibility of hypothesizing an antiviral use by CAR-T cells.

3.
Sci Total Environ ; 811: 152295, 2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1616759

ABSTRACT

COVID-19 pandemic-borne wastes imposed a severe threat to human lives as well as the total environment. Improper handling of these wastes increases the possibility of future transmission. Therefore, immediate actions are required from both local and international authorities to mitigate the amount of waste generation and ensure proper disposal of these wastes, especially for low-income and developing countries where solid waste management is challenging. In this study, an attempt is made to estimate healthcare waste generated during the COVID-19 pandemic in Bangladesh. This study includes infected, ICU, deceased, isolated and quarantined patients as the primary sources of medical waste. Results showed that COVID-19 medical waste from these patients was 658.08 tons in March 2020 and increased to 16,164.74 tons in April 2021. A top portion of these wastes was generated from infected and quarantined patients. Based on survey data, approximate daily usage of face masks and hand gloves is also determined. Probable waste generation from COVID-19 confirmatory tests and vaccination has been simulated. Finally, several guidelines are provided to ensure the country's proper disposal and management of COVID-related wastes.


Subject(s)
COVID-19 , Medical Waste Disposal , Medical Waste , Waste Management , Bangladesh/epidemiology , Delivery of Health Care , Humans , Pandemics , SARS-CoV-2
4.
Modeling earth systems and environment ; : 1-9, 2021.
Article in English | EuropePMC | ID: covidwho-1469135

ABSTRACT

The CAR-T cells are the genetically engineered T cells, designed to work specifically for the virus antigens (or other antigens, such as tumour specific antigens). The CAR-T cells work as the living drug and thus provides an adoptive immunotherapy strategy. The novel corona virus treatment and control designs are still under clinical trials. One of such techniques is the injection of CAR-T cells to fight against the COVID-19 infection. In this manuscript, the hypothesis is based on the CAR-T cells, that are suitably engineered towards SARS-2 viral antigen, by the N protein. The N protein binds to the SARS-2 viral RNA and is found in abundance in this virus, thus for the engineered cell research, this protein sequence is chosen as a potential target. The use of the sub-population of T-reg cells is also outlined. Mathematical modeling of such complex line of action can help to understand the dynamics. The modeling approach is inspired from the probabilistic rules, including the branching process, the Moran process and kinetic models. The Moran processes are well recognized in the fields of artificial intelligence and data science. The model depicts the infectious axis “virus—CAR-T cells—memory cells”. The theoretical analysis provides a positive therapeutic action;the delay in viral production may have a significant impact on the early stages of infection. Although it is necessary to carefully evaluate the possible side effects of therapy. This work introduces the possibility of hypothesizing an antiviral use by CAR-T cells.

5.
Mar Pollut Bull ; 168: 112419, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1201510

ABSTRACT

Face masks are playing an essential role in preventing the spread of COVID-19. Face masks such as N95, and surgical masks, contain a considerable portion of non-recyclable plastic material. Marine plastic pollution is likely to increase due to the rapid use and improper dispensing of face masks, but until now, no extensive quantitative estimation exists for coastal regions. Linking behaviour dataset on face mask usage and solid waste management dataset, this study estimates annual face mask utilization and plastic pollution from mismanaged face masks in coastal regions of 46 countries. It is estimated that approximately 0.15 million tons to 0.39 million tons of plastic debris could end up in global oceans within a year. With lower waste management facilities, the number of plastic debris entering the ocean will rise. Significant investments are required from global communities in improving the waste management facilities for better disposal of masks and solid waste.


Subject(s)
COVID-19 , Plastics , Humans , Masks , Oceans and Seas , SARS-CoV-2
6.
J Mol Liq ; 327: 114863, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-947329

ABSTRACT

It is highly desired to explore the interventions of COVID-19 for early treatment strategies. Such interventions are still under consideration. A model is benchmarked research and comprises target cells, virus infected cells, immune cells, pro-inflammatory cytokines, and, anti-inflammatory cytokine. The interaction of the drug with the inflammatory sub-system is analyzed with the aid of kinetic modeling. The impact of drug therapy on the immune cells is modelled and the computational framework is verified with the aid of numerical simulations. The work includes a significant hypothesis that quantifies the complex dynamics of the infection, by relating it to the effect of the inflammatory syndrome generated by IL-6. In this paper we use the cancer immunoediting process: a dynamic process initiated by cancer cells in response to immune surveillance of the immune system that it can be conceptualized by an alternating movement that balances immune protection with immune evasion. The mechanisms of resistance to immunotherapy seem to broadly overlap with those used by cancers as they undergo immunoediting to evade detection by the immune system. In this process the immune system can both constrain and promote tumour development, which proceeds through three phases termed: (i) Elimination, (ii) Equilibrium, and, (iii) Escape [1]. We can also apply these concepts to viral infection, which, although it is not exactly "immunoediting", has many points in common and helps to understand how it expands into an "untreated" host and can help in understanding the SARS-CoV2 virus infection and treatment model.

SELECTION OF CITATIONS
SEARCH DETAIL